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Let Q be a finite quiver with no oriented cycles, I its set of vertices, k an alge-
braically closed field, andModkQ the category of finite-dimensional representations
of Q. A representation of Q is a collection (Xi, ϕα) of vector spaces Xi, one for each
vertex i ∈ I, and of homomorphisms ϕα : Xi → Xj, one for each arrow α : i→ j.

The dimension type of X = (Xi, ϕα) ∈ModkQ is

dimX =
∑
i∈I

dim(Xi)i,

and is an element of the free abelian group ZI. The dimension of X is

dim(X) =
∑
i∈I

dim(Xi),

and we can view dim as a element of (ZI)∗.
Fix once and for all a linear map θ =

∑
i∈I θii

∗ ∈ (ZI)∗, and define the slope of
a non-zero representation X to be

µ(X) =
θ(X)

dim(X)

where by θ(X) we mean θ applied to the dimension type of X.

Definition. A representation X ∈ModkQ is semistable if for any nonzero submod-
ule M ≤ X, µ(M) ≤ µ(X). It is stable if whenever M is a proper submodule,
µ(M) < µ(X). We will say X is µ0-(semi)stable if it is (semi)stable and µ(X) = µ0.

1 The Representation Space of a Quiver

Fix a dimension type d =
∑

i∈I dii, and define

Rd =
⊕
α:i→j

Homk(Xi, Xj),
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where each Xi is a vector space over k of dimension di. Rd parametrizes the rep-
resentations of Q of dimension type d, since once we have fixed the vector spaces
Xi, any representation is determined precisely by a choice of homomorphisms ϕα
corresponding to the arrows. Define

Gd =
∏
i∈I

GLk(Xi),

so that Gd acts on Rd via

(gi)i∈I · (ϕα)α:i→j = (gjϕαg
−1
i )α:i→j

The orbits of Gd on Rd are in bijective correspondence with the isomorphism classes
of Q-representations of dimension type d.

Let µ0 = θ(d)
dim(d)

, and define the corresponding character χ0 of Gd by

χ0 =
∏
i∈I

det(gi)
µ0−θi

where we recall that the θi’s are the coefficients of θ in (ZI)∗.

Theorem 1.1. A representation X ∈ModkQ of dimension type d is µ0-(semi)stable
if and only if, as a point in Rd, it is χ0-(semi)stable in the sense of Mumford’s GIT.

The proof of this theorem will follow [3] and will make use of the Hilbert-Mumford
Numerical Criterion, which we recall here:

Theorem. Let G be a reductive algebraic group acting on a vector space R over k,
and let χ be a character of G. Then x ∈ R is χ-semistable if and only if, for every
one-parameter subgroup λ : G → k× such that limt→0λ(t) · x exists, 〈χ, λ〉 ≥ 0. A
point x ∈ R is χ-stable if and only if, for every such one-parameter subgroup λ 6= 0,
〈χ, λ〉 > 0.

Proof. (of Theorem 1.1) In order to apply Hilbert-Mumford, we first need to establish
how one-parameter subgroups of Gd act on the representation space Rd. Suppose
λ : k× → Gd is a one-parameter subgroup—then λ induces a (commutative) one-
parameter subgroup in each GLk(Xi) which acts diagonally on Xi by powers of t.
Each Xi decomposes into a sum of weight spaces for the action of λ,

Xi =
⊕
n∈Z

X
(n)
i ,
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where λ(t) · v = tnv for every v ∈ X(n)
i . We will write X≥ni =

⊕
m≥nX

(m)
i .

Then each homomorphism ϕα : Xi → Xj decomposes into components

ϕ(mn)
α : X

(n)
i → X

(m)
j ,

and λ acts on each component by

λ(t) · ϕ(mn)
α = λ(t)|Xj · ϕ(mn)

α · λ(t)|−1Xi
= tm · ϕ(mn)

α · t−n

= tm−nϕ(mn)
α

Hence if the limit of λ(t) · (ϕα)α:i→j is to exist as t→ 0, we must have ϕ
(mn)
α = 0

whenever m < n and for every arrow α. Then

ϕα:i→j : X≥ni → X≥nj

and each M≥n = (X≥ni , ϕα) is a subrepresentation of X = (Xi, ϕα). This makes

. . . ⊆M≥n+1 ⊆M≥n ⊆M≥n−1 ⊆ . . .

a filtration of X by subrepresentations. Because X is finite-dimensional, the filtration
is finite.

So we have seen that one-parameter subgroups for which the limit exists induce
filtrations of X by subrepresentations. In fact, whenever we have a filtration

. . . ⊆M≥n+1 ⊆M≥n ⊆M≥n−1 ⊆ . . .

of X by subreps, we can extract (non-uniquely) a one-parameter subgroup λ by
declaring that λ(t) acts on a complement of M≥n+1

i in M≥n
i by tn.

Now, suppose that X is µ0-semistable, and suppose λ : k× → Gd is a one-
parameter subgroup such that limt→0λ(t) · X exists. Then λ induces a filtration of
X by subrepresentations as above, and we have

χ0(λ(t)) =
∏
i∈I

det(λ(t)i)
µ0−θi

=
∏
i∈I

∏
n∈Z

det(λ(t)|
X

(n)
i

)µ0−θi

=
∏
i∈I

∏
n∈Z

(tn)dim(X
(n)
i )(µ0−θi)
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which gives

〈χ0, λ〉 =
∑
i∈I

∑
n∈Z

n · dim(X
(n)
i )(µ0 − θi)

=
∑
n∈Z

n
(

dim(M≥n/M≥n+1)µ0 − θ(M≥n/M≥n+1)
)

=
∑
n∈Z

n · dim(M≥n)µ0 − n · dim(M≥n+1)µ0 − n · θ(M≥n) + n · θ(M≥n+1)

=
∑
n∈Z

dim(M≥n)µ0 − θ(M≥n)

Since X is µ0-semistable and each M≥n is a subrepresentation,

θ(M≥n)

dim(M≥n)
= µ(M≥n) ≤ µ(X) = µ0

⇒ dim(M≥n)µ0 − θ(M≥n) ≥ 0

and so each term of the sum above is positive. Thus 〈χ0, λ〉 ≥ 0, and by Hilbert-
Mumford X is χ0-semistable.

For the converse, assume X is χ0-semistable, and first let λ : k× → Gd be the
trivial one-parameter subgroup. This induces the trivial filtration

0 ⊂ X

and since

χ0(λ(t)) =
∏
i∈I

det(λ(t)i)
µ0−θi =

∏
i∈I

1µ0−θi = 1

we have that

0 = 〈χ0, λ〉 = dim(0)µ0 − θ(0) + dim(X)µ0 − θ(X) = dim(X)µ0 − θ(X)

and we see that µ(X) = µ0. Now, let M be a non-zero proper submodule of X.
Then the filtration

0 ⊂M ⊂ X

corresponds to a one-parameter subgroup λ and, by χ0-semistability and Hilbert-
Mumford,

0 ≤ 〈χ0, λ〉 = dim(0)µ0 − θ(0) + dim(M)µ0 − θ(M) + dim(X)µ0 − θ(X)

= dim(M)µ0 − θ(M)
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so

µ(M) =
θ(M)

dim(M)
≤ µ0 = µ(X)

and thus X is µ0-semistable.
That X is µ0-stable if and only if it is χ0-stable follows from exactly the same

arguments by replacing each inequality by a strict inequality.

2 The Harder-Narasimhan Filtration

Now we pivot to a more category-theoretic perspective. The following results, which
are proved for representations of Q, hold with little modification in any abelian
category if θ and dim are chosen correctly as positive functions on the Grothendieck
group.[2]

Lemma 2.1. If
0 −→M −→ X −→ N −→ 0

is a short exact sequence in ModkQ, then

µ(M) ≤ µ(X) ⇐⇒ µ(X) ≤ µ(N) ⇐⇒ µ(M) ≤ µ(N).

Proof. Note that since θ and dim are defined only on dimension types, we have
θ(X) = θ(M) + θ(N) and dim(X) = dim(M) + dim(N).

θ(M)

dim(M)
≤ θ(M) + θ(N)

dim(M) + dim(N)

⇐⇒ θ(M) dim(M) + θ(M) dim(N) ≤ θ(M) dim(M) + θ(N) dim(M)

⇐⇒ θ(M) dim(N) ≤ θ(N) dim(M)

⇐⇒ θ(M)

dim(M)
≤ θ(N)

dim(N)

θ(M) + θ(N)

dim(M) + dim(N)
≤ θ(N)

dim(N)

⇐⇒ θ(N) dim(N) + θ(M) dim(N) ≤ θ(N) dim(N) + θ(N) dim(M)

⇐⇒ θ(M) dim(N) ≤ θ(N) dim(M)

⇐⇒ θ(M)

dim(M)
≤ θ(N)

dim(N)

5



This lemma is referred to as the “seesaw property” in [2], and will be very useful
to us in what follows. In particular, it tells us that when X is semistable, the slopes
in any short exact sequence are increasing.

Definition. A Harder-Narasimhan (HN) filtration of X ∈ModkQ is a filtration by
subrepresentations

0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xs = X

such that

· Xk/Xk−1 is semistable

· µ(X1) > µ(X2/X1) > . . . > µ(Xs/Xs−1)

Theorem 2.2. Every X ∈ModkQ has a unique HN-filtration.

We will first require an important lemma.

Lemma 2.3. Among the subrepresentations of X ∈ModkQ of maximal slope, there
is a unique one of maximal dimension.

Proof. Towards a contradiction, suppose that M and N are two distinct subrepre-
sentations of X of maximal slope and the same (maximal) dimension. Then M +N
is a subrepresentation of X of strictly greater dimension.

We have the short exact sequences

0 −→M −→M +N −→ N

M ∩N
−→ 0

0 −→M ∩N −→ N −→ N

M ∩N
−→ 0

Because of Lemma 2.1, the slopes in the first sequence are decreasing by the max-
imality of µ(M), and the slopes in the second are increasing by the maximality of
µ(N), so that

µ(M) ≥ µ
( N

M ∩N

)
≥ µ(N)

and thus equality holds everywhere in both exact sequences. In particular µ(M) =
µ(M+N), and M+N is a subrepresentation of maximal slope and greater dimension
than either M or N—a contradiction.

6



Proof. (of Theorem 2.2) We will proceed by induction on the dimension of X. Choose
Xmax to be the unique submodule of X of maximal slope and maximal dimension
among these. The quotient X/Xmax has strictly smaller dimension than X, and so
it has a unique HN-filtration by the inductive hypothesis. Since subrepresentations
of X/Xmax correspond precisely to subrepresentations of X containing Xmax, we will
write the HN-filtration on X/Xmax suggestively as

0 ⊂ X2/Xmax ⊂ . . . ⊂ Xs/Xmax = X/Xmax.

Under the quotient X → X/Xmax, this filtration pulls back to the filtration by
subrepresentations

0 ⊂ Xmax ⊂ X2 ⊂ . . . ⊂ Xs = X

on X. Since the quotients of this new filtration are the same as that of the filtration
on X/Xmax,

Xk

Xk−1
∼=

Xk/Xmax

Xk−1/Xmax

,

they satisfy the properties required by the definition of the HN-filtration. The only
thing to check is that Xmax itself is semistable and has greater slope than the subse-
quent quotients.

That it is semistable is clear since any submodule of Xmax is also a submodule
of X and thus has smaller slope than Xmax. Moreover, we have the short exact
sequence

0 −→ Xmax −→ X2 −→ X2/Xmax −→ 0

in which the slopes are decreasing by the maximality of the slope of Xmax, so we
have µ(Xmax) ≥ µ(X2/Xmax). Equality cannot hold, since then we would have
µ(Xmax) = µ(X2) and Xmax ⊂ X2, contradicting the maximality of the dimension of
Xmax. Consequently

· Xmax and Xk/Xk−1 are semistable

· µ(Xmax) > µ(X2/Xmax) > . . . > µ(Xs/Xs−1)

and our filtration is indeed a Harder-Narasimhan filtration.
It remains to show uniqueness. It will follow immediately from the uniqueness

of the HN filtration on X/Xmax once we have shown that Xmax must be the first
subrepresentation in any HN-filtration of X.

Suppose
0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xs = X

7



is a HN-filtration on X. Since Xmax is uniquely determined by the requirement
that it have maximal dimension among the subrepresentations of maximal slope, it
suffices to check that X1 also has this property.

Suppose towards a contradiction that X1 does not have maximal slope, and let
k be the smallest index such that there is a subrepresentation Y ⊂ Xk with µ(Y ) >
µ(X1). Since X1 is semistable, k 6= 1. Then we have the short exact sequence

0 −→ Xk−1 ∩ Y −→ Y −→ Y

Xk−1 ∩ Y
∼=
Xk−1 + Y

Xk−1
−→ 0

Now, (Xk−1 + Y )/Xk−1 is a subrepresentation of Xk/Xk−1, which is semistable, so

µ
(Xk−1 + Y

Xk−1

)
≤ µ

( Xk

Xk−1

)
< µ(X1) < µ(Y ).

If Xk−1 ∩ Y = 0, we have an isomorphism Y ∼= (Xk−1 + Y )/Xk−1 that gives us
µ(Y ) = µ((Xk−1 + Y )/Xk−1), which contradicts the strict inequalities above.

If Xk−1∩Y 6= 0, the inequality tells us that the slopes in our short exact sequence
are decreasing, so

µ(Xk−1 ∩ Y ) ≥ µ(Y ) > µ(X1),

and so Xk−1 contains the subrepresentation Xk−1 ∩ Y of slope strictly greater than
that of X1, contradicting the minimality of k.

Now suppose, again towards a contradiction, that X1 does not have maximal
dimension among the subrepresentations of maximal slope. Let k be the small-
est index such that there is a subrepresentation Y ⊂ Xk with µ(Y ) = µ(X1) and
dim(Y ) > dim(X1). Once again we inspect the short exact sequence

0 −→ Xk−1 ∩ Y −→ Y −→ Y

Xk−1 ∩ Y
∼=
Xk−1 + Y

Xk−1
−→ 0

in which the slopes are increasing since Y , having maximal slope, is semistable. But
then

µ(Y ) ≤ µ
(Xk−1 + Y

Xk−1

)
≤ µ

( Xk

Xk−1

)
< µ(X1)

where the second inequality follows from the semistability of Xk/Xk−1 and the third
inequality follows from the properties of the HN-filtration. Since this third inequality
is required to be strict by the HN hypotheses, and since we assumed µ(Y ) = µ(X1),
we have reached a contradiction.

So X1 must have maximal dimension among the subrepresentations of maximal
slope, so by Lemma 2.3, X1 = Xmax. Then uniqueness of the HN-filtration on X
follows inductively from the uniqueness of the HN-filtration on X/Xmax.
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3 The HN-Stratification

The existence and uniqueness of HN-filtrations will allow us to stratify the points of
Rd according to the dimension types of their HN-filtrations, following [1].

Definition. If X ∈ModkQ is a representation with HN-filtration

0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xs = X,

the HN type of X is the tuple of dimension types

d∗ =
(

dim(X1), dim
(X2

X1

)
, . . . , dim

( Xs

Xs−1

))
We will refer to a dimension type d as semistable if there is a semistable Q-

representation of dimension type d. A tuple of dimension types d∗ = (d1, d2, . . . , ds)
will be called of HN type if

· each dk is semistable

· µ(d1) > µ(d2) > . . . > µ(ds)

Definition. If d∗ = (d1, d2, . . . , ds) is a tuple of HN type and
∑
dk = d, the HN-

stratum of type d∗ is the subset RHN
d∗ ⊂ Rd of representations X ∈ Rd whose HN

type is d∗.
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Theorem 3.1. RHN
d∗ is irreducible and locally closed in Rd.

Proof. Fix a flag F ∗ of type d∗:

0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ F s = X

—that is, each F k is a collection of vector spaces {F k
i }, one for each vertex i ∈ I,

such that dim(F k/F k−1) = dk. For every i,

0 ⊂ F 1
i ⊂ F 2

i ⊂ . . . ⊂ F s
i = Xi

is a flag of subspaces in Xi.
Let Z ⊂ Rd be the subset of representations X = (Xi, ϕα) that are compatible

with this flag—that is, for which

ϕα(F k
i ) ⊆ F k

j

for every arrow α : i→ j. On such an X, F ∗ gives a filtration by subrepresentations.
The set Z is a closed subset of Rd, and there is a natural projection

π : Z −→ Rd1 ×Rd2 × . . .×Rds

obtained by mapping each compatible representation X to the sequence of quotients
(F 1, F 2/F 1, . . . , F s/F s−1) given by restricting the ϕα’s appropriately. The preimage
Z0 = π−1(Rss

d1 ×Rss
d2 × . . .×Rss

ds) is an open subset of Z.
Let Pd∗ be the parabolic subgroup of Gd preserving the flag F ∗—that is, Pd∗ is

the product of the parabolic subgroups Pi ⊂ GL(Xi) preserving the flags

0 ⊂ F 1
i ⊂ . . . ⊂ F s

i = Xi.

Then Pd∗ acts on Z and, since the group action preserves semistability, it also acts
on Z0.

We consider the fiber bundle

m : Gd ×Pd∗ Z −→ Rd

(g,X) 7−→ g ·X

and its restriction to Z0

m0 : Gd ×Pd∗ Z0 −→ Rd

(g,X) 7−→ g ·X
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Because the action of Gd is transitive on flags, any representation with some
filtration of type d∗ is Gd-conjugate to one in which the vector spaces of the filtration
are given by F ∗. Thus, the image of m is the subset Rd∗ ⊂ Rd of representations
that have some filtration of type d∗. Since Rd∗ is closed in Rd, m is closed. Since it
is a fiber bundle, it is also open.

The image of m0 is the set of points in Rd∗ in which the filtration of type d∗ has
semistable quotients—so it is precisely the stratum RHN

d∗ . In fact, m0 is a bijection
onto this stratum:

Suppose m0(g1, X1) = m0(g2, X2), so g1 ·X1 = g2 ·X2. Since g−12 g1X1 = X2 ∈ Z0,
the filtration F ∗ on g−12 g1X1 has semistable quotients. Since g−12 g1X1 ∈ RHN

d∗ , the
image of the filtration F ∗ under g−11 g2 also has semistable quotients. But by the
uniqueness of HN-filtrations, F ∗ and its image under g−12 g1 must then be the same,
so g−12 g1 preserves F ∗ and we get g−12 g1 ∈ Pd∗ . Then

(g2, X2) = (g2, g
−1
2 g1X1) ∼ (g2g

−1
2 g1, X1) = (g1, X1)

so m0 is injective.
Thus we have an isomorphism

m0 : Gd ×Pd∗ Z0
∼−−→ RHN

d∗ .

Since Gd and Z0 are both irreducible, so is RHN
d∗ . Since m is both open and closed,

and since Gd × Z0 is open in Gd × Z, RHN
d∗ is open in Rd∗ , and so RHN

d∗ is locally
closed in Rd.

We have stratifiedRd into irreducible, locally closed strata, and we have seen that
the closure of the HN-stratum RHN

d∗ is precisely Rd∗ . We will see that Rd∗ is not
always a union of HN-strata, but it is contained in a more or less restricted collection
of HN-strata nonetheless. We give a partial ordering on the set of HN-types that
will allow us to make this statement more precise.

Definition. For an HN-type d∗ = (d1, . . . , ds), define P (d∗) to be the polygon in N2

with vertices v0 = (0, 0), vk = (
∑k

i=1 dim(di),
∑k

i=1 θ(d
i)). Note that the slope of the

edge from vk−1 to vk is
θ(dk)

dim(dk)
= µ(dk),

so the fact that d∗ is an HN-type—and in particular that the slopes of the dk’s are
decreasing—tells us that P (d∗) is a convex polygon. Now define a partial order
d∗ ≤ e∗ if and only if P (d∗) lies on or below P (e∗) in N2.
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Theorem 3.2.
Rd∗ ⊆

⋃
e∗≥d∗

RHN
e∗ .

Proof. Let X ∈ Rd∗ . We will show that the HN type e∗ of X is greater than or equal
to d∗. Since X has a filtration of type d∗, it suffices to show that for an arbitrary
subrepresentation U ⊂ X, the point (dim(U), θ(U)) is on or below P (e∗). We will
induct on the length of the tuple e∗. If the length is 1, X is semistable and there is
nothing to prove.

Let
0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xs = X

be the HN-filtration on X, so that

0 ⊂ X2/X1 ⊂ . . . ⊂ Xs/X1 = X/X1

is the HN-filtration on X/X1, which has length s− 1. Denote its dimension type f ∗.
By the induction hypothesis, the point (dim((U+X1)/X1), θ((U+X1)/X1)) lies on or
below P (f ∗), so the point (dim(U+X1), θ(U+X1)) lies on or below P (e∗), since quo-
tienting by X1 is the same as translating, in the N2-plane, by (−dim(X1),−θ(X1)).

Now we have the short exact sequences

0 −→ U −→ U +X1 −→ X1/(U ∩X1) −→ 0

0 −→ U ∩X1 −→ X1 −→ X1/(U ∩X1) −→ 0.

Since X1 has maximal slope among the submodules of X, the slopes in the second
sequence are increasing and

µ(U +X1) ≤ µ(X1) ≤ µ(X1/(U ∩X1)).

So the slopes in the first sequence are also increasing, so

µ(U) ≤ µ(U +X1)

and since U +X1 is on or below P (e∗) and has a greater x-coordinate than U , U is
also on or below P (e∗).
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The inclusion in Theorem 3.2 may be proper. The following example will illustrate
this.

Example. Consider the quiver

i −→ j −→ k

and its representations of dimension type d = i+j+k over C. Then a representation
will look like

C x−−→ C y−−→ C
and

Rd = HomC(C,C)× HomC(C,C) = C× C.
Let θ = 2i∗ + 3j∗ and take the tuple d∗ = (i, j + k). We want to see when X has

an HN-filtration of type d∗. Such a filtration will look like

0 ⊂ C x−−→ 0
y−−→ 0 ⊂ C x−−→ C y−−→ C,

and the first subspace will be a subrepresentation if and only if x = 0. Moreover,
the quotient

0
0−−→ C y−−→ C

gives the subrepresentation slopes

µ(0
0−−→ C y−−→ C) = 3/2

µ(0
0−−→ 0

y−−→ C) = 0

and if y = 0

µ(0
0−−→ C 0−−→ 0) = 3.

The last equation makes 0
0−−→ C y−−→ C unstable, so we require y 6= 0, making our

HN-stratum RHN
d∗ = {0} × C∗.

Now consider the tuple e∗ = (j, i, k), which gives a filtration

0 ⊂ 0
x−−→ C y−−→ 0 ⊂ C x−−→ C y−−→ 0 ⊂ C x−−→ C y−−→ C.

For the first subspace to be a subrepresentation we need y = 0. But in fact that
condition is the only one, since the quotients, being one-dimensional, are always
semistable. This gives us the stratum RHN

e∗ = C× {0}.
Then the closure of RHN

d∗ is {0} × C, which is properly contained in the union
RHN
d∗ ∪RHN

e∗ = {0} × C∗ ∪ C× {0} = C× C, but is not itself a union of strata.
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4 Kempf-Ness and Quivers

From now on we work over C. We recall briefly the theory of Kempf-Ness and its
generalization to Mumford’s GIT. For this we follow [3], where the proofs of the
following statements may also be found.

Let R be a vector space on which a reductive algebraic group G acts, and fix a
character χ of G. Let K ≤ G be a maximal compact subgroup, k its Lie algebra,
and recall that g = k ⊕ ik. Let (· , ·) be a K-invariant hermitian form on R, and
η : R −→ (ik)∗ the moment map, given by

ηx(A) = (A · x, x)

for every x ∈ R and A ∈ ik.
Let dχ denote the restriction of the derivative of χ to ik, so that dχ ∈ (ik)∗. Then

we have the following generalization of Kempf-Ness:

Theorem. The preimage η−1(dχ) meets each G-orbit in R that is closed in Rss
χ in

exactly one K-orbit, and meets no other G-orbits.

Corollary.
η−1(dχ)/K ←→ Rss

χ //(G,χ)

Now, returning to the context of quivers, we have

R = Rd

G = Gd

χ = χ0

and if we fix a Hermitian inner product on each Xi, invariant under the action of the
unitary subgroup U(di) ≤ GL(Xi), we have the maximal compact subgroup

Ud =
∏
i∈I

U(di) ≤ Gd.

Its lie algebra is k =
⊕

i∈I HermC(Xi), the sum of the spaces of Hermitian endomor-
phisms on each Xi.

Our Hermitian inner product induces an inner product on each HomC(Xi, Xj)
given by

(ϕ, ψ) = Tr(ϕ · ψ∗),
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so the corresponding inner product on Rd is

((ϕα), (ψα)) =
∑
α

Tr(ϕα · ψ∗α).

We will compute the moment map with respect to this inner product. Recall that
G acts on Rd by

(gi)i∈I · (ϕα)α:i→j = (gjϕαg
−1
i )α:i→j,

so g acts on Rd by

(Ai)i∈I · (ϕα)α:i→j = (Ajϕα − ϕαAi)α:i→j.

Then the moment map η(ϕα)(Ai) is

((Ai) · (ϕα), (ϕα)) = ((Ajϕα − ϕαAi), (ϕα))

=
∑
α:i→j

Tr(Ajϕαϕ
∗
α − ϕαAiϕ∗α)

=
∑
i∈I

Ai

( ∑
α:�→j

Tr(ϕαϕ
∗
α)−

∑
α:i→�

Tr(ϕ∗αϕα)
)

where the last equality follows from the fact that Tr(ϕαAiϕ
∗
α) = Tr(Aiϕ

∗
αϕα).
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