Semistable Representations of Quivers

Ana Balibanu

Let @ be a finite quiver with no oriented cycles, I its set of vertices, k an alge-
braically closed field, and Mod (@ the category of finite-dimensional representations
of Q. A representation of ) is a collection (X;, ¢, ) of vector spaces X;, one for each
vertex ¢ € I, and of homomorphisms ¢, : X; — X, one for each arrow a: 7 — j.

The dimension type of X = (X, va) € ModiQ is

dimX =" dim(X,)i,
iel
and is an element of the free abelian group ZI. The dimension of X is
dim(X) =) " dim(X;),
icl

and we can view dim as a element of (ZI)*.
Fix once and for all a linear map 6 = )
a non-zero representation X to be

0;i* € (ZI)*, and define the slope of

el

HX) = d?n(a)(())()

where by 6(X) we mean 6 applied to the dimension type of X.

Definition. A representation X € Mod,(Q is semistable if for any nonzero submod-
ule M < X, pu(M) < pu(X). It is stable if whenever M is a proper submodule,
u(M) < u(X). We will say X is ug-(semi)stable if it is (semi)stable and p(X) = py.

1 The Representation Space of a Quiver

Fix a dimension type d = >_._; d;i, and define

el

Ra= P Homy(X;, X;),

a:i—j



where each X; is a vector space over k of dimension d;. R, parametrizes the rep-
resentations of () of dimension type d, since once we have fixed the vector spaces
X;, any representation is determined precisely by a choice of homomorphisms ¢,
corresponding to the arrows. Define

Ga= [ GLu(X),

i€l

so that G4 acts on Ry via

(9i)ier - (Pa)asimi = (95Pali asiosi

The orbits of G4 on R, are in bijective correspondence with the isomorphism classes
of Q-representations of dimension type d.
0(d)

Let pp = m, and define the corresponding character x of G4 by

Xo = H det (g;)"0~"

iel
where we recall that the 6;’s are the coefficients of 6 in (ZI)*.

Theorem 1.1. A representation X € ModQ of dimension type d is po-(semi)stable
if and only if, as a point in Ry, it is xo-(semi)stable in the sense of Mumford’s GIT.

The proof of this theorem will follow [3] and will make use of the Hilbert-Mumford
Numerical Criterion, which we recall here:

Theorem. Let G be a reductive algebraic group acting on a vector space R over k,
and let x be a character of G. Then x € R s x-semistable if and only if, for every
one-parameter subgroup A : G — k™ such that lim_o\(t) - x exists, (x,\) > 0. A
point x € R is x-stable if and only if, for every such one-parameter subgroup \ # 0,
(x,A) > 0.

Proof. (of Theorem 1.1) In order to apply Hilbert-Mumford, we first need to establish
how one-parameter subgroups of GG; act on the representation space Ry. Suppose
A kX — Gy is a one-parameter subgroup—then A induces a (commutative) one-
parameter subgroup in each G'L;(X;) which acts diagonally on X; by powers of t.
Each X; decomposes into a sum of weight spaces for the action of A,

X =P x,

neL



where A(t) - v = t"v for every v € X™. We will write X" = D,xn xm,
Then each homomorphism ¢, : X; — X; decomposes into components

(P(mn) :Xz‘(n) N X](m),

«

and A\ acts on each component by

At) - o™ = Mt)lx, - 90 A1)
— . SO(gmn) S

i

—1
X;

— tmfn

Hence if the limit of A(t) - (¢a)as:is; 18 to exist as ¢ — 0, we must have G

whenever m < n and for every arrow «. Then
Pasisg 1 X7 — X"
and each M>" = (X" ,) is a subrepresentation of X = (X, ¢,). This makes
C M O MEC M C L

a filtration of X by subrepresentations. Because X is finite-dimensional, the filtration
is finite.

So we have seen that one-parameter subgroups for which the limit exists induce
filtrations of X by subrepresentations. In fact, whenever we have a filtration

. C ML Cc e MR CL L

of X by subreps, we can extract (non-uniquely) a one-parameter subgroup A by
declaring that A(t) acts on a complement of MZ"" in M=" by t".

Now, suppose that X is pg-semistable, and suppose A : £ — G, is a one-
parameter subgroup such that lim; ,oA(t) - X exists. Then A induces a filtration of
X by subrepresentations as above, and we have

H det(A(t);)H0~ —0i

el

= H H det |X("> uof&'
i€l neZ

= H H(t")dim(xi(n))(#o—@i)
i€l neZ



which gives

(X0, A) =D > n- dim(X™) (o — 6:)

i€l neZ

=Y n (dlm (M= /M=) g = (M= /M=)

nez

= Zn dim(M=")pg — n - dim(M="" g — n - O(M=") +n - H(M="1)

nez

— 3 dim(M>")pg — O(M>")

nez
Since X is po-semistable and each M=" is a subrepresentation,
0(M=") >
——— =pu(M=") < pu(X) =
= dim(M=")po — O(M=") > 0
and so each term of the sum above is positive. Thus (xo,A) > 0, and by Hilbert-
Mumford X is yg-semistable.

For the converse, assume X is yg-semistable, and first let X : £ — G4 be the
trivial one-parameter subgroup. This induces the trivial filtration

0CX

and since
= [ det(A()iyo =] 1% =1
i€l el

we have that
0 = (xo0,A) = dim(0)po — 6(0) + dim(X)po — 6(X) = dim(X)po — 0(X)

and we see that u(X) = pg. Now, let M be a non-zero proper submodule of X.
Then the filtration
OoCcMcCX

corresponds to a one-parameter subgroup A and, by xg-semistability and Hilbert-
Mumford,

0 < (x0, A) = dim(0)ag — 8(0) + dim(M)pug — (M) + dim(X)pzp — 6(X)
— dim(M )y — 6(M)



SO

_ (M)
N dim(M)

u(M)

and thus X is pg-semistable.
That X is pe-stable if and only if it is x(-stable follows from exactly the same
arguments by replacing each inequality by a strict inequality. ]

< po = pu(X)

2 The Harder-Narasimhan Filtration

Now we pivot to a more category-theoretic perspective. The following results, which
are proved for representations of (), hold with little modification in any abelian
category if # and dim are chosen correctly as positive functions on the Grothendieck

group.[2]
Lemma 2.1. If
0O—M-—X —N—0

s a short exact sequence in Mod,(Q), then
p(M) < p(X) = u(X) <p(N) <= (M) < p(N).
Proof. Note that since ¢ and dim are defined only on dimension types, we have
0(X)=0(M)+60(N) and dim(X) = dim(M) + dim(N).
O(M) < O(M)+6(N)
dim(M) — dim(M) + dim(N)
<~ O(M)dim(M)+ 6(M)dim(N) < §(M)dim(M) + 6(N) dim(M)
< O(M)dim(N) < §(N)dim(M)
o01) _ o)
dim(M) — dim(N)
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This lemma is referred to as the “seesaw property” in [2], and will be very useful
to us in what follows. In particular, it tells us that when X is semistable, the slopes
in any short exact sequence are increasing.

Definition. A Harder-Narasimhan (HN) filtration of X € Mod(Q is a filtration by
subrepresentations
0CcX;CXoC...C X=X

such that
- Xj/Xk—1 is semistable

Cp(X1) > p(Xe/Xy) > > (X /X )

Theorem 2.2. Fvery X € ModyQ has a unique HN-filtration.
We will first require an important lemma.

Lemma 2.3. Among the subrepresentations of X € Mod,Q) of maximal slope, there
is a unique one of maximal dimension.

Proof. Towards a contradiction, suppose that M and N are two distinct subrepre-
sentations of X of maximal slope and the same (maximal) dimension. Then M + N
is a subrepresentation of X of strictly greater dimension.

We have the short exact sequences

0O—M —M+N— — 0

MNN

0O—MNON—N — — 0

MNN
Because of Lemma 2.1, the slopes in the first sequence are decreasing by the max-

imality of u(M), and the slopes in the second are increasing by the maximality of
pu(N), so that

uOM) > (5727 ) = BN)

and thus equality holds everywhere in both exact sequences. In particular u(M) =
u(M+N), and M+ N is a subrepresentation of maximal slope and greater dimension
than either M or N—a contradiction. ]



Proof. (of Theorem 2.2) We will proceed by induction on the dimension of X. Choose
Xnaz to be the unique submodule of X of maximal slope and maximal dimension
among these. The quotient X/X,,,, has strictly smaller dimension than X, and so
it has a unique HN-filtration by the inductive hypothesis. Since subrepresentations
of X/ X nae correspond precisely to subrepresentations of X containing X4, we will
write the HN-filtration on X/ X, suggestively as

0C XQ/Xmaac C...C Xs/Xmaz = X/Xmaac-

Under the quotient X — X/ X4, this filtration pulls back to the filtration by
subrepresentations
0C Xmae CXoC...C X, =X

on X. Since the quotients of this new filtration are the same as that of the filtration

on X/ Xmaz,
Xk ~ Xk/Xmaz

kal B kal/Xma:E’

they satisfy the properties required by the definition of the HN-filtration. The only
thing to check is that X, itself is semistable and has greater slope than the subse-
quent quotients.

That it is semistable is clear since any submodule of X,,,, is also a submodule
of X and thus has smaller slope than X,,,,. Moreover, we have the short exact
sequence

0 — Xpaw — Xo — Xo/ X gz — 0

in which the slopes are decreasing by the maximality of the slope of X4, SO we
have p(Xmaz) > w(X2/Xmae). Equality cannot hold, since then we would have
p( Xomaz) = p(X2) and X0, C X, contradicting the maximality of the dimension of
Xonaz- Consequently

- Xmaer and X /X1 are semistable

' M(Xmaa:) > M(XQ/Xmaac> >z ILL(XS/XS—1>

and our filtration is indeed a Harder-Narasimhan filtration.

It remains to show uniqueness. It will follow immediately from the uniqueness
of the HN filtration on X/X,,., once we have shown that X,,,, must be the first
subrepresentation in any HN-filtration of X.

Suppose

tcxicXoCc...cX,=X



is a HN-filtration on X. Since X,,,, is uniquely determined by the requirement
that it have maximal dimension among the subrepresentations of maximal slope, it
suffices to check that X also has this property.

Suppose towards a contradiction that X; does not have maximal slope, and let
k be the smallest index such that there is a subrepresentation Y C X with u(Y') >
p(X7). Since X is semistable, k£ # 1. Then we have the short exact sequence

Y X4V
XeaNY X
Now, (Xx-1 +Y)/Xy_1 is a subrepresentation of X} /Xj_1, which is semistable, so

Xp—1+ Y> ( Xk >
— | < < u(Xy) < u(Y).
,u( X, S p X, (X)) < p(Y)

If X1 NY =0, we have an isomorphism Y = (X;_; +Y)/X;_; that gives us
p(Y) = p((Xk-1 +Y)/Xk_1), which contradicts the strict inequalities above.

If X;_1NY # 0, the inequality tells us that the slopes in our short exact sequence
are decreasing, so

0 — X4-1NY —Y — — 0

((Xp—1 NY) = p(Y) > p(X),
and so Xj_; contains the subrepresentation X, 1 N'Y of slope strictly greater than
that of X7, contradicting the minimality of k.

Now suppose, again towards a contradiction, that X; does not have maximal
dimension among the subrepresentations of maximal slope. Let k£ be the small-
est index such that there is a subrepresentation Y C X with p(Y) = pu(X;) and
dim(Y') > dim(X7). Once again we inspect the short exact sequence

Y ~ X1+ Y
XeiNY Xy
in which the slopes are increasing since Y, having maximal slope, is semistable. But
then

0 — Xp_1NY —Y — — 0

u(Y) < M(W) <u( al ) < u(x1)

k—1 k—1
where the second inequality follows from the semistability of X} /X1 and the third
inequality follows from the properties of the HN-filtration. Since this third inequality
is required to be strict by the HN hypotheses, and since we assumed p(Y) = u(X3),
we have reached a contradiction.

So X; must have maximal dimension among the subrepresentations of maximal
slope, so by Lemma 2.3, X; = X,,4.. Then uniqueness of the HN-filtration on X
follows inductively from the uniqueness of the HN-filtration on X/ X4 O



3 The HN-Stratification

The existence and uniqueness of HN-filtrations will allow us to stratify the points of
R4 according to the dimension types of their HN-filtrations, following [1].

Definition. If X € Mod,(Q) is a representation with HN-filtration
OCX1CX2C...CXS=X7

the HN type of X is the tuple of dimension types

$:<@ﬁXm@mC%>~*@mQ§i»

We will refer to a dimension type d as semistable if there is a semistable Q-
representation of dimension type d. A tuple of dimension types d* = (d*, d?, ..., d*)
will be called of HN type if

. each d* is semistable

S p(dh) > p(d®) > > p(d)

Definition. If d* = (d',d?,...,d*) is a tuple of HN type and >_d* = d, the HN-
stratum of type d* is the subset RIN C Ry of representations X € Ry whose HN
type is d*.



Theorem 3.1. REN is irreducible and locally closed in R.
Proof. Fix a flag F™* of type d*:
OCF'CF’c...cF =X

—that is, each F* is a collection of vector spaces {FF}, one for each vertex i € I,
such that dim(F*/F*!) = d*. For every i,

OCF'CcF'cC...CF=X,

)

is a flag of subspaces in Xj.
Let Z C R4 be the subset of representations X = (X, p,) that are compatible
with this flag—that is, for which

k k
@a(Fi)gFj

for every arrow « : ¢ — j. On such an X, F'* gives a filtration by subrepresentations.
The set Z is a closed subset of R4, and there is a natural projection

T4 —Rp XRgp X ... X Rys

obtained by mapping each compatible representation X to the sequence of quotients
(FY,F?/Ft ... F¢/Fs ) given by restricting the ¢,’s appropriately. The preimage
Zy =7 YR x R x ... x RE) is an open subset of Z.

Let P; be the parabolic subgroup of G4 preserving the flag F*—that is, Py is
the product of the parabolic subgroups P; C GL(X;) preserving the flags

0CF'c...Cc Ff=X,

Then Py acts on Z and, since the group action preserves semistability, it also acts
on Zo.
We consider the fiber bundle

m: Gy xtv 7 — Ry
(9, X)—g- X

and its restriction to Zj
my : Gy x Far Zy — Ra

(9. X)r—g-X

10



Because the action of G4 is transitive on flags, any representation with some
filtration of type d* is G 4-conjugate to one in which the vector spaces of the filtration
are given by F™. Thus, the image of m is the subset R4 C Ry of representations
that have some filtration of type d*. Since R4~ is closed in R4, m is closed. Since it
is a fiber bundle, it is also open.

The image of my is the set of points in R4+ in which the filtration of type d* has
semistable quotients—so it is precisely the stratum RZN. In fact, my is a bijection
onto this stratum:

Suppose mq(g1, X1) = mo(g2, X2), 50 g1 - X1 = go - Xo. Since g5 'g1 X, = X5 € Z,
the filtration F* on g, '¢;X; has semistable quotients. Since g;'¢g;X; € REN . the
image of the filtration F* under g;'g, also has semistable quotients. But by the
uniqueness of HN-filtrations, F* and its image under g, 'g; must then be the same,
S0 g5 'g1 preserves F* and we get gy 'g; € Pye. Then

(92, X2) = (92,95 ' 1. X1) ~ (9295 "1, X1) = (g1, X1)

so my is injective.
Thus we have an isomorphism

mo: Gg xTe Zy = RIEN.

Since G4 and Z, are both irreducible, so is REZYN. Since m is both open and closed,
and since Gy X Zj is open in G4 x Z, RIY is open in Ry, and so REY is locally
closed in Ry. O]

We have stratified R4 into irreducible, locally closed strata, and we have seen that
the closure of the HN-stratum Rfl{N is precisely Rg«. We will see that R4« is not
always a union of HN-strata, but it is contained in a more or less restricted collection
of HN-strata nonetheless. We give a partial ordering on the set of HN-types that
will allow us to make this statement more precise.

Definition. For an HN-type d* = (d*, ..., d*), define P(d*) to be the polygon in N?
with vertices vy = (0,0), v, = (325, dim(d?), S35, 6(d)). Note that the slope of the
edge from v,_; to vy is

(d*)

dlim—(d’“) = M(dk%

so the fact that d* is an HN-type—and in particular that the slopes of the d*’s are
decreasing—tells us that P(d*) is a convex polygon. Now define a partial order
d* < e* if and only if P(d*) lies on or below P(e*) in N2.

11



Theorem 3.2.
Re C | REN.
e*>d*
Proof. Let X € Ry+. We will show that the HN type e* of X is greater than or equal
to d*. Since X has a filtration of type d*, it suffices to show that for an arbitrary
subrepresentation U C X, the point (dim(U),0(U)) is on or below P(e*). We will
induct on the length of the tuple e*. If the length is 1, X is semistable and there is
nothing to prove.
Let
tcxXxicXoC...Cc X=X

be the HN-filtration on X, so that
0C Xo/XiC...C X/ X1 =X/X,

is the HN-filtration on X/ X, which has length s — 1. Denote its dimension type f*.

By the induction hypothesis, the point (dim((U+X1)/X1),0((U+X1)/X1)) lies on or

below P(f*), so the point (dim(U+X;),0(U+ X)) lies on or below P(e*), since quo-

tienting by X, is the same as translating, in the N%-plane, by (—dim(X1), —0(X1)).
Now we have the short exact sequences

0—U-—U+X; — X,/(UNX;) —0

Since X; has maximal slope among the submodules of X, the slopes in the second
sequence are increasing and

WU + X1) < pu(X0) < (X0 /(U 0 X)),
So the slopes in the first sequence are also increasing, so
w(U) < (U + Xy)

and since U + X is on or below P(e*) and has a greater z-coordinate than U, U is
also on or below P(e*). O

12



The inclusion in Theorem 3.2 may be proper. The following example will illustrate
this.

Example. Consider the quiver
1— ] — k
and its representations of dimension type d = i+ j+k over C. Then a representation
will look like
c--c-5HcC
and
R4 = Home(C,C) x Hom¢(C,C) = C x C.

Let 6 = 2¢* + 3j* and take the tuple d* = (i,j + k). We want to see when X has

an HN-filtration of type d*. Such a filtration will look like
0cC-—-0--0cC--C-5C,

and the first subspace will be a subrepresentation if and only if x = 0. Moreover,
the quotient

0->c-LcC
gives the subrepresentation slopes
10— C % C) =3/2
10 -0 C)=0
and if y =0
10— € -2 0) = 3.
The last equation makes 0 2.cLcC unstable, so we require y # 0, making our

HN-stratum REYN = {0} x C*.
Now consider the tuple e* = (4,1, k), which gives a filtration

tco->Cc-LHLocccLocecLHc L.

For the first subspace to be a subrepresentation we need y = 0. But in fact that
condition is the only one, since the quotients, being one-dimensional, are always
semistable. This gives us the stratum RZY = C x {0}.

Then the closure of REN is {0} x C, which is properly contained in the union
RIEN URAN = {0} x C*UC x {0} = C x C, but is not itself a union of strata.

13



4 Kempf-Ness and Quivers

From now on we work over C. We recall briefly the theory of Kempf-Ness and its
generalization to Mumford’s GIT. For this we follow [3], where the proofs of the
following statements may also be found.

Let R be a vector space on which a reductive algebraic group G acts, and fix a
character x of G. Let K < G be a maximal compact subgroup, ¢ its Lie algebra,
and recall that g = €@ it. Let (-,-) be a K-invariant hermitian form on R, and
n: R — (it)* the moment map, given by

ne(A) = (A~ 2, x)

for every x € R and A € it.
Let dx denote the restriction of the derivative of x to i€, so that dy € (i#)*. Then
we have the following generalization of Kempf-Ness:

Theorem. The preimage n~'(dx) meets each G-orbit in R that is closed in R in
exactly one K-orbit, and meets no other G-orbits.

Corollary.
N dX) /K «— RY//(GX)

Now, returning to the context of quivers, we have

R=R,
G =Gy
X = Xo

and if we fix a Hermitian inner product on each X;, invariant under the action of the
unitary subgroup U(d;) < GL(X;), we have the maximal compact subgroup

Us = H U(d;) < Ga.
iel
Its lie algebra is ¢ = P
phisms on each X;.

Our Hermitian inner product induces an inner product on each Home(X;, Xj;)
given by

.y Herme (X;), the sum of the spaces of Hermitian endomor-

(g, ) =Tr(p-¥"),

14



so the corresponding inner product on Ry is

((¢a), (¥a)) = ZTT(SOQ )

We will compute the moment map with respect to this inner product. Recall that
G acts on Ry by

(gi)ie[ : (‘pa)a:i—m’ = (gjspagi_l)a:i—w’a
so g acts on Ry by
(Ai)ieI : (Spa)a:i—m' = (Ajs% - SOaAi)a:i—)j-

Then the moment map 7,,)(4;) is

(A7) - (pa); (a)) = ((Aja — Padi), (¢a))
= Z TT(AngQQOZ - SOaAi‘;OZ)

at—]
=S A Y Trleagt) = D Tr(eiea)
icl a:0—j a:—0

where the last equality follows from the fact that Tr(p,Ai@l) = Tr(Aiplva)-
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