Semistable Representations of Quivers

Ana Bălibanu

Let Q be a finite quiver with no oriented cycles, I its set of vertices, k an algebraically closed field, and $\operatorname{Mod}_{k} Q$ the category of finite-dimensional representations of Q. A representation of Q is a collection $\left(X_{i}, \varphi_{\alpha}\right)$ of vector spaces X_{i}, one for each vertex $i \in I$, and of homomorphisms $\varphi_{\alpha}: X_{i} \rightarrow X_{j}$, one for each arrow $\alpha: i \rightarrow j$.

The dimension type of $X=\left(X_{i}, \varphi_{\alpha}\right) \in \mathcal{M o d}_{k} Q$ is

$$
\underline{\operatorname{dim}} X=\sum_{i \in I} \operatorname{dim}\left(X_{i}\right) i,
$$

and is an element of the free abelian group $\mathbb{Z} I$. The dimension of X is

$$
\operatorname{dim}(X)=\sum_{i \in I} \operatorname{dim}\left(X_{i}\right)
$$

and we can view dim as a element of $(\mathbb{Z} I)^{*}$.
Fix once and for all a linear map $\theta=\sum_{i \in I} \theta_{i} i^{*} \in(\mathbb{Z} I)^{*}$, and define the slope of a non-zero representation X to be

$$
\mu(X)=\frac{\theta(X)}{\operatorname{dim}(X)}
$$

where by $\theta(X)$ we mean θ applied to the dimension type of X.
Definition. A representation $X \in \mathcal{M o d}_{k} Q$ is semistable if for any nonzero submodule $M \leq X, \mu(M) \leq \mu(X)$. It is stable if whenever M is a proper submodule, $\mu(M)<\mu(X)$. We will say X is μ_{0}-(semi)stable if it is (semi)stable and $\mu(X)=\mu_{0}$.

1 The Representation Space of a Quiver

Fix a dimension type $d=\sum_{i \in I} d_{i} i$, and define

$$
\mathcal{R}_{d}=\bigoplus_{\alpha: i \rightarrow j} \operatorname{Hom}_{k}\left(X_{i}, X_{j}\right)
$$

where each X_{i} is a vector space over k of dimension d_{i}. \mathcal{R}_{d} parametrizes the representations of Q of dimension type d, since once we have fixed the vector spaces X_{i}, any representation is determined precisely by a choice of homomorphisms φ_{α} corresponding to the arrows. Define

$$
G_{d}=\prod_{i \in I} G L_{k}\left(X_{i}\right)
$$

so that G_{d} acts on \mathcal{R}_{d} via

$$
\left(g_{i}\right)_{i \in I} \cdot\left(\varphi_{\alpha}\right)_{\alpha: i \rightarrow j}=\left(g_{j} \varphi_{\alpha} g_{i}^{-1}\right)_{\alpha: i \rightarrow j}
$$

The orbits of G_{d} on \mathcal{R}_{d} are in bijective correspondence with the isomorphism classes of Q-representations of dimension type d.

Let $\mu_{0}=\frac{\theta(d)}{\operatorname{dim}(d)}$, and define the corresponding character χ_{0} of G_{d} by

$$
\chi_{0}=\prod_{i \in I} \operatorname{det}\left(g_{i}\right)^{\mu_{0}-\theta_{i}}
$$

where we recall that the θ_{i} 's are the coefficients of θ in $(\mathbb{Z} I)^{*}$.
Theorem 1.1. A representation $X \in \mathcal{M o d}_{k} Q$ of dimension type d is μ_{0}-(semi)stable if and only if, as a point in \mathcal{R}_{d}, it is χ_{0}-(semi)stable in the sense of Mumford's GIT.

The proof of this theorem will follow [3] and will make use of the Hilbert-Mumford Numerical Criterion, which we recall here:

Theorem. Let G be a reductive algebraic group acting on a vector space R over k, and let χ be a character of G. Then $x \in R$ is χ-semistable if and only if, for every one-parameter subgroup $\lambda: G \rightarrow k^{\times}$such that $\lim _{t \rightarrow 0} \lambda(t) \cdot x$ exists, $\langle\chi, \lambda\rangle \geq 0$. A point $x \in R$ is χ-stable if and only if, for every such one-parameter subgroup $\lambda \neq 0$, $\langle\chi, \lambda\rangle>0$.

Proof. (of Theorem 1.1) In order to apply Hilbert-Mumford, we first need to establish how one-parameter subgroups of G_{d} act on the representation space \mathcal{R}_{d}. Suppose $\lambda: k^{\times} \rightarrow G_{d}$ is a one-parameter subgroup-then λ induces a (commutative) oneparameter subgroup in each $G L_{k}\left(X_{i}\right)$ which acts diagonally on X_{i} by powers of t. Each X_{i} decomposes into a sum of weight spaces for the action of λ,

$$
X_{i}=\bigoplus_{n \in \mathbb{Z}} X_{i}^{(n)}
$$

where $\lambda(t) \cdot v=t^{n} v$ for every $v \in X_{i}^{(n)}$. We will write $X_{i}^{\geq n}=\bigoplus_{m \geq n} X_{i}^{(m)}$.
Then each homomorphism $\varphi_{\alpha}: X_{i} \rightarrow X_{j}$ decomposes into components

$$
\varphi_{\alpha}^{(m n)}: X_{i}^{(n)} \rightarrow X_{j}^{(m)}
$$

and λ acts on each component by

$$
\begin{aligned}
\lambda(t) \cdot \varphi_{\alpha}^{(m n)} & =\left.\left.\lambda(t)\right|_{X_{j}} \cdot \varphi_{\alpha}^{(m n)} \cdot \lambda(t)\right|_{X_{i}} ^{-1} \\
& =t^{m} \cdot \varphi_{\alpha}^{(m n)} \cdot t^{-n} \\
& =t^{m-n} \varphi_{\alpha}^{(m n)}
\end{aligned}
$$

Hence if the limit of $\lambda(t) \cdot\left(\varphi_{\alpha}\right)_{\alpha: i \rightarrow j}$ is to exist as $t \rightarrow 0$, we must have $\varphi_{\alpha}^{(m n)}=0$ whenever $m<n$ and for every arrow α. Then

$$
\varphi_{\alpha: i \rightarrow j}: X_{i}^{\geq n} \rightarrow X_{j}^{\geq n}
$$

and each $M^{\geq n}=\left(X_{i}^{\geq n}, \varphi_{\alpha}\right)$ is a subrepresentation of $X=\left(X_{i}, \varphi_{\alpha}\right)$. This makes

$$
\ldots \subseteq M^{\geq n+1} \subseteq M^{\geq n} \subseteq M^{\geq n-1} \subseteq \ldots
$$

a filtration of X by subrepresentations. Because X is finite-dimensional, the filtration is finite.

So we have seen that one-parameter subgroups for which the limit exists induce filtrations of X by subrepresentations. In fact, whenever we have a filtration

$$
\ldots \subseteq M^{\geq n+1} \subseteq M^{\geq n} \subseteq M^{\geq n-1} \subseteq \ldots
$$

of X by subreps, we can extract (non-uniquely) a one-parameter subgroup λ by declaring that $\lambda(t)$ acts on a complement of $M_{i}^{\geq n+1}$ in $M_{i}^{\geq n}$ by t^{n}.

Now, suppose that X is μ_{0}-semistable, and suppose $\lambda: k^{\times} \rightarrow G_{d}$ is a oneparameter subgroup such that $\lim _{t \rightarrow 0} \lambda(t) \cdot X$ exists. Then λ induces a filtration of X by subrepresentations as above, and we have

$$
\begin{aligned}
\chi_{0}(\lambda(t)) & =\prod_{i \in I} \operatorname{det}\left(\lambda(t)_{i}\right)^{\mu_{0}-\theta_{i}} \\
& =\prod_{i \in I} \prod_{n \in \mathbb{Z}} \operatorname{det}\left(\left.\lambda(t)\right|_{X_{i}^{(n)}}\right)^{\mu_{0}-\theta_{i}} \\
& =\prod_{i \in I} \prod_{n \in \mathbb{Z}}\left(t^{n}\right)^{\operatorname{dim}\left(X_{i}^{(n)}\right)\left(\mu_{0}-\theta_{i}\right)}
\end{aligned}
$$

which gives

$$
\begin{aligned}
\left\langle\chi_{0}, \lambda\right\rangle & =\sum_{i \in I} \sum_{n \in \mathbb{Z}} n \cdot \operatorname{dim}\left(X_{i}^{(n)}\right)\left(\mu_{0}-\theta_{i}\right) \\
& =\sum_{n \in \mathbb{Z}} n\left(\operatorname{dim}\left(M^{\geq n} / M^{\geq n+1}\right) \mu_{0}-\theta\left(M^{\geq n} / M^{\geq n+1}\right)\right) \\
& =\sum_{n \in \mathbb{Z}} n \cdot \operatorname{dim}\left(M^{\geq n}\right) \mu_{0}-n \cdot \operatorname{dim}\left(M^{\geq n+1}\right) \mu_{0}-n \cdot \theta\left(M^{\geq n}\right)+n \cdot \theta\left(M^{\geq n+1}\right) \\
& =\sum_{n \in \mathbb{Z}} \operatorname{dim}\left(M^{\geq n}\right) \mu_{0}-\theta\left(M^{\geq n}\right)
\end{aligned}
$$

Since X is μ_{0}-semistable and each $M^{\geq n}$ is a subrepresentation,

$$
\begin{aligned}
\frac{\theta\left(M^{\geq n}\right)}{\operatorname{dim}\left(M^{\geq n}\right)}=\mu\left(M^{\geq n}\right) \leq & \mu(X)=\mu_{0} \\
& \Rightarrow \operatorname{dim}\left(M^{\geq n}\right) \mu_{0}-\theta\left(M^{\geq n}\right) \geq 0
\end{aligned}
$$

and so each term of the sum above is positive. Thus $\left\langle\chi_{0}, \lambda\right\rangle \geq 0$, and by HilbertMumford X is χ_{0}-semistable.

For the converse, assume X is χ_{0}-semistable, and first let $\lambda: k^{\times} \rightarrow G_{d}$ be the trivial one-parameter subgroup. This induces the trivial filtration

$$
0 \subset X
$$

and since

$$
\chi_{0}(\lambda(t))=\prod_{i \in I} \operatorname{det}\left(\lambda(t)_{i}\right)^{\mu_{0}-\theta_{i}}=\prod_{i \in I} 1^{\mu_{0}-\theta_{i}}=1
$$

we have that

$$
0=\left\langle\chi_{0}, \lambda\right\rangle=\operatorname{dim}(0) \mu_{0}-\theta(0)+\operatorname{dim}(X) \mu_{0}-\theta(X)=\operatorname{dim}(X) \mu_{0}-\theta(X)
$$

and we see that $\mu(X)=\mu_{0}$. Now, let M be a non-zero proper submodule of X. Then the filtration

$$
0 \subset M \subset X
$$

corresponds to a one-parameter subgroup λ and, by χ_{0}-semistability and HilbertMumford,

$$
\begin{aligned}
0 \leq\left\langle\chi_{0}, \lambda\right\rangle & =\operatorname{dim}(0) \mu_{0}-\theta(0)+\operatorname{dim}(M) \mu_{0}-\theta(M)+\operatorname{dim}(X) \mu_{0}-\theta(X) \\
& =\operatorname{dim}(M) \mu_{0}-\theta(M)
\end{aligned}
$$

SO

$$
\mu(M)=\frac{\theta(M)}{\operatorname{dim}(M)} \leq \mu_{0}=\mu(X)
$$

and thus X is μ_{0}-semistable.
That X is μ_{0}-stable if and only if it is χ_{0}-stable follows from exactly the same arguments by replacing each inequality by a strict inequality.

2 The Harder-Narasimhan Filtration

Now we pivot to a more category-theoretic perspective. The following results, which are proved for representations of Q, hold with little modification in any abelian category if θ and dim are chosen correctly as positive functions on the Grothendieck group.[2]

Lemma 2.1. If

$$
0 \longrightarrow M \longrightarrow X \longrightarrow N \longrightarrow 0
$$

is a short exact sequence in $\operatorname{Mod}_{k} Q$, then

$$
\mu(M) \leq \mu(X) \Longleftrightarrow \mu(X) \leq \mu(N) \Longleftrightarrow \mu(M) \leq \mu(N)
$$

Proof. Note that since θ and dim are defined only on dimension types, we have $\theta(X)=\theta(M)+\theta(N)$ and $\operatorname{dim}(X)=\operatorname{dim}(M)+\operatorname{dim}(N)$.

$$
\begin{aligned}
& \frac{\theta(M)}{\operatorname{dim}(M)} \leq \frac{\theta(M)+\theta(N)}{\operatorname{dim}(M)+\operatorname{dim}(N)} \\
& \Longleftrightarrow \theta(M) \operatorname{dim}(M)+\theta(M) \operatorname{dim}(N) \leq \theta(M) \operatorname{dim}(M)+\theta(N) \operatorname{dim}(M) \\
& \Longleftrightarrow \theta(M) \operatorname{dim}(N) \leq \theta(N) \operatorname{dim}(M) \\
& \Longleftrightarrow \frac{\theta(M)}{\operatorname{dim}(M)} \leq \frac{\theta(N)}{\operatorname{dim}(N)} \\
& \frac{\theta(M)+\theta(N)}{\operatorname{dim}(M)+\operatorname{dim}(N)} \leq \frac{\theta(N)}{\operatorname{dim}(N)} \\
& \Longleftrightarrow \theta(N) \operatorname{dim}(N)+\theta(M) \operatorname{dim}(N) \leq \theta(N) \operatorname{dim}(N)+\theta(N) \operatorname{dim}(M) \\
& \Longleftrightarrow \theta(M) \operatorname{dim}(N) \leq \theta(N) \operatorname{dim}(M) \\
& \Longleftrightarrow \frac{\theta(M)}{\operatorname{dim}(M)} \leq \frac{\theta(N)}{\operatorname{dim}(N)}
\end{aligned}
$$

This lemma is referred to as the "seesaw property" in [2], and will be very useful to us in what follows. In particular, it tells us that when X is semistable, the slopes in any short exact sequence are increasing.

Definition. A Harder-Narasimhan (HN) filtration of $X \in \mathcal{M o d}_{k} Q$ is a filtration by subrepresentations

$$
0 \subset X_{1} \subset X_{2} \subset \ldots \subset X_{s}=X
$$

such that

$$
\begin{aligned}
& \text {. } X_{k} / X_{k-1} \text { is semistable } \\
& \cdot \mu\left(X_{1}\right)>\mu\left(X_{2} / X_{1}\right)>\ldots>\mu\left(X_{s} / X_{s-1}\right)
\end{aligned}
$$

Theorem 2.2. Every $X \in \mathcal{M o d}_{k} Q$ has a unique $H N$-filtration.
We will first require an important lemma.
Lemma 2.3. Among the subrepresentations of $X \in \mathcal{M o d}_{k} Q$ of maximal slope, there is a unique one of maximal dimension.

Proof. Towards a contradiction, suppose that M and N are two distinct subrepresentations of X of maximal slope and the same (maximal) dimension. Then $M+N$ is a subrepresentation of X of strictly greater dimension.

We have the short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow M \longrightarrow M+N \longrightarrow \frac{N}{M \cap N} \longrightarrow 0 \\
& 0 \longrightarrow M \cap N \longrightarrow N \longrightarrow \frac{N}{M \cap N} \longrightarrow 0
\end{aligned}
$$

Because of Lemma 2.1, the slopes in the first sequence are decreasing by the maximality of $\mu(M)$, and the slopes in the second are increasing by the maximality of $\mu(N)$, so that

$$
\mu(M) \geq \mu\left(\frac{N}{M \cap N}\right) \geq \mu(N)
$$

and thus equality holds everywhere in both exact sequences. In particular $\mu(M)=$ $\mu(M+N)$, and $M+N$ is a subrepresentation of maximal slope and greater dimension than either M or N-a contradiction.

Proof. (of Theorem 2.2) We will proceed by induction on the dimension of X. Choose $X_{\max }$ to be the unique submodule of X of maximal slope and maximal dimension among these. The quotient $X / X_{\max }$ has strictly smaller dimension than X, and so it has a unique HN-filtration by the inductive hypothesis. Since subrepresentations of $X / X_{\max }$ correspond precisely to subrepresentations of X containing $X_{\max }$, we will write the HN-filtration on $X / X_{\max }$ suggestively as

$$
0 \subset X_{2} / X_{\max } \subset \ldots \subset X_{s} / X_{\max }=X / X_{\max }
$$

Under the quotient $X \rightarrow X / X_{\text {max }}$, this filtration pulls back to the filtration by subrepresentations

$$
0 \subset X_{\max } \subset X_{2} \subset \ldots \subset X_{s}=X
$$

on X. Since the quotients of this new filtration are the same as that of the filtration on $X / X_{\text {max }}$,

$$
\frac{X_{k}}{X_{k-1}} \cong \frac{X_{k} / X_{\max }}{X_{k-1} / X_{\max }}
$$

they satisfy the properties required by the definition of the HN-filtration. The only thing to check is that $X_{\max }$ itself is semistable and has greater slope than the subsequent quotients.

That it is semistable is clear since any submodule of $X_{\max }$ is also a submodule of X and thus has smaller slope than $X_{\max }$. Moreover, we have the short exact sequence

$$
0 \longrightarrow X_{\max } \longrightarrow X_{2} \longrightarrow X_{2} / X_{\max } \longrightarrow 0
$$

in which the slopes are decreasing by the maximality of the slope of $X_{\max }$, so we have $\mu\left(X_{\max }\right) \geq \mu\left(X_{2} / X_{\max }\right)$. Equality cannot hold, since then we would have $\mu\left(X_{\max }\right)=\mu\left(X_{2}\right)$ and $X_{\max } \subset X_{2}$, contradicting the maximality of the dimension of $X_{\text {max }}$. Consequently

- $X_{m a x}$ and X_{k} / X_{k-1} are semistable

$$
\mu\left(X_{\max }\right)>\mu\left(X_{2} / X_{\max }\right)>\ldots>\mu\left(X_{s} / X_{s-1}\right)
$$

and our filtration is indeed a Harder-Narasimhan filtration.
It remains to show uniqueness. It will follow immediately from the uniqueness of the HN filtration on $X / X_{\max }$ once we have shown that $X_{\max }$ must be the first subrepresentation in any HN-filtration of X.

Suppose

$$
0 \subset X_{1} \subset X_{2} \subset \ldots \subset X_{s}=X
$$

is a HN-filtration on X. Since $X_{\max }$ is uniquely determined by the requirement that it have maximal dimension among the subrepresentations of maximal slope, it suffices to check that X_{1} also has this property.

Suppose towards a contradiction that X_{1} does not have maximal slope, and let k be the smallest index such that there is a subrepresentation $Y \subset X_{k}$ with $\mu(Y)>$ $\mu\left(X_{1}\right)$. Since X_{1} is semistable, $k \neq 1$. Then we have the short exact sequence

$$
0 \longrightarrow X_{k-1} \cap Y \longrightarrow Y \longrightarrow \frac{Y}{X_{k-1} \cap Y} \cong \frac{X_{k-1}+Y}{X_{k-1}} \longrightarrow 0
$$

Now, $\left(X_{k-1}+Y\right) / X_{k-1}$ is a subrepresentation of X_{k} / X_{k-1}, which is semistable, so

$$
\mu\left(\frac{X_{k-1}+Y}{X_{k-1}}\right) \leq \mu\left(\frac{X_{k}}{X_{k-1}}\right)<\mu\left(X_{1}\right)<\mu(Y)
$$

If $X_{k-1} \cap Y=0$, we have an isomorphism $Y \cong\left(X_{k-1}+Y\right) / X_{k-1}$ that gives us $\mu(Y)=\mu\left(\left(X_{k-1}+Y\right) / X_{k-1}\right)$, which contradicts the strict inequalities above.

If $X_{k-1} \cap Y \neq 0$, the inequality tells us that the slopes in our short exact sequence are decreasing, so

$$
\mu\left(X_{k-1} \cap Y\right) \geq \mu(Y)>\mu\left(X_{1}\right)
$$

and so X_{k-1} contains the subrepresentation $X_{k-1} \cap Y$ of slope strictly greater than that of X_{1}, contradicting the minimality of k.

Now suppose, again towards a contradiction, that X_{1} does not have maximal dimension among the subrepresentations of maximal slope. Let k be the smallest index such that there is a subrepresentation $Y \subset X_{k}$ with $\mu(Y)=\mu\left(X_{1}\right)$ and $\operatorname{dim}(Y)>\operatorname{dim}\left(X_{1}\right)$. Once again we inspect the short exact sequence

$$
0 \longrightarrow X_{k-1} \cap Y \longrightarrow Y \longrightarrow \frac{Y}{X_{k-1} \cap Y} \cong \frac{X_{k-1}+Y}{X_{k-1}} \longrightarrow 0
$$

in which the slopes are increasing since Y, having maximal slope, is semistable. But then

$$
\mu(Y) \leq \mu\left(\frac{X_{k-1}+Y}{X_{k-1}}\right) \leq \mu\left(\frac{X_{k}}{X_{k-1}}\right)<\mu\left(X_{1}\right)
$$

where the second inequality follows from the semistability of X_{k} / X_{k-1} and the third inequality follows from the properties of the HN-filtration. Since this third inequality is required to be strict by the HN hypotheses, and since we assumed $\mu(Y)=\mu\left(X_{1}\right)$, we have reached a contradiction.

So X_{1} must have maximal dimension among the subrepresentations of maximal slope, so by Lemma 2.3, $X_{1}=X_{\max }$. Then uniqueness of the HN-filtration on X follows inductively from the uniqueness of the HN-filtration on $X / X_{\max }$.

3 The HN-Stratification

The existence and uniqueness of HN-filtrations will allow us to stratify the points of \mathcal{R}_{d} according to the dimension types of their HN-filtrations, following [1].

Definition. If $X \in \mathcal{M o d}_{k} Q$ is a representation with HN-filtration

$$
0 \subset X_{1} \subset X_{2} \subset \ldots \subset X_{s}=X
$$

the HN type of X is the tuple of dimension types

$$
d^{*}=\left(\underline{\operatorname{dim}}\left(X_{1}\right), \underline{\operatorname{dim}}\left(\frac{X_{2}}{X_{1}}\right), \ldots, \underline{\operatorname{dim}}\left(\frac{X_{s}}{X_{s-1}}\right)\right)
$$

We will refer to a dimension type d as semistable if there is a semistable Q representation of dimension type d. A tuple of dimension types $d^{*}=\left(d^{1}, d^{2}, \ldots, d^{s}\right)$ will be called of $H N$ type if

- each d^{k} is semistable
- $\mu\left(d^{1}\right)>\mu\left(d^{2}\right)>\ldots>\mu\left(d^{s}\right)$

Definition. If $d^{*}=\left(d^{1}, d^{2}, \ldots, d^{s}\right)$ is a tuple of HN type and $\sum d^{k}=d$, the $H N$ stratum of type d^{*} is the subset $\mathcal{R}_{d^{*}}^{H N} \subset \mathcal{R}_{d}$ of representations $X \in \mathcal{R}_{d}$ whose HN type is d^{*}.

Theorem 3.1. $\mathcal{R}_{d^{*}}^{H N}$ is irreducible and locally closed in \mathcal{R}_{d}.
Proof. Fix a flag F^{*} of type d^{*} :

$$
0 \subset F^{1} \subset F^{2} \subset \ldots \subset F^{s}=X
$$

-that is, each F^{k} is a collection of vector spaces $\left\{F_{i}^{k}\right\}$, one for each vertex $i \in I$, such that $\operatorname{dim}\left(F^{k} / F^{k-1}\right)=d^{k}$. For every i,

$$
0 \subset F_{i}^{1} \subset F_{i}^{2} \subset \ldots \subset F_{i}^{s}=X_{i}
$$

is a flag of subspaces in X_{i}.
Let $Z \subset \mathcal{R}_{d}$ be the subset of representations $X=\left(X_{i}, \varphi_{\alpha}\right)$ that are compatible with this flag-that is, for which

$$
\varphi_{\alpha}\left(F_{i}^{k}\right) \subseteq F_{j}^{k}
$$

for every arrow $\alpha: i \rightarrow j$. On such an X, F^{*} gives a filtration by subrepresentations. The set Z is a closed subset of \mathcal{R}_{d}, and there is a natural projection

$$
\pi: Z \longrightarrow \mathcal{R}_{d^{1}} \times \mathcal{R}_{d^{2}} \times \ldots \times \mathcal{R}_{d^{s}}
$$

obtained by mapping each compatible representation X to the sequence of quotients $\left(F^{1}, F^{2} / F^{1}, \ldots, F^{s} / F^{s-1}\right)$ given by restricting the φ_{α} 's appropriately. The preimage $Z_{0}=\pi^{-1}\left(\mathcal{R}_{d^{1}}^{s s} \times \mathcal{R}_{d^{2}}^{s s} \times \ldots \times \mathcal{R}_{d^{s}}^{s s}\right)$ is an open subset of Z.

Let $P_{d^{*}}$ be the parabolic subgroup of G_{d} preserving the flag F^{*} - that is, $P_{d^{*}}$ is the product of the parabolic subgroups $P_{i} \subset G L\left(X_{i}\right)$ preserving the flags

$$
0 \subset F_{i}^{1} \subset \ldots \subset F_{i}^{s}=X_{i} .
$$

Then $P_{d^{*}}$ acts on Z and, since the group action preserves semistability, it also acts on Z_{0}.

We consider the fiber bundle

$$
\begin{aligned}
m: & G_{d} \times^{P_{d^{*}}} Z \longrightarrow \mathcal{R}_{d} \\
& (g, X) \longmapsto g \cdot X
\end{aligned}
$$

and its restriction to Z_{0}

$$
\begin{aligned}
m_{0}: & G_{d} \times^{P_{d^{*}}} Z_{0} \longrightarrow \mathcal{R}_{d} \\
& (g, X) \longmapsto g \cdot X
\end{aligned}
$$

Because the action of G_{d} is transitive on flags, any representation with some filtration of type d^{*} is G_{d}-conjugate to one in which the vector spaces of the filtration are given by F^{*}. Thus, the image of m is the subset $\mathcal{R}_{d^{*}} \subset \mathcal{R}_{d}$ of representations that have some filtration of type d^{*}. Since $\mathcal{R}_{d^{*}}$ is closed in \mathcal{R}_{d}, m is closed. Since it is a fiber bundle, it is also open.

The image of m_{0} is the set of points in $\mathcal{R}_{d^{*}}$ in which the filtration of type d^{*} has semistable quotients-so it is precisely the stratum $R_{d^{*}}^{H N}$. In fact, m_{0} is a bijection onto this stratum:

Suppose $m_{0}\left(g_{1}, X_{1}\right)=m_{0}\left(g_{2}, X_{2}\right)$, so $g_{1} \cdot X_{1}=g_{2} \cdot X_{2}$. Since $g_{2}^{-1} g_{1} X_{1}=X_{2} \in Z_{0}$, the filtration F^{*} on $g_{2}^{-1} g_{1} X_{1}$ has semistable quotients. Since $g_{2}^{-1} g_{1} X_{1} \in R_{d^{*}}^{H N}$, the image of the filtration F^{*} under $g_{1}^{-1} g_{2}$ also has semistable quotients. But by the uniqueness of HN-filtrations, F^{*} and its image under $g_{2}^{-1} g_{1}$ must then be the same, so $g_{2}^{-1} g_{1}$ preserves F^{*} and we get $g_{2}^{-1} g_{1} \in P_{d^{*}}$. Then

$$
\left(g_{2}, X_{2}\right)=\left(g_{2}, g_{2}^{-1} g_{1} X_{1}\right) \sim\left(g_{2} g_{2}^{-1} g_{1}, X_{1}\right)=\left(g_{1}, X_{1}\right)
$$

so m_{0} is injective.
Thus we have an isomorphism

$$
m_{0}: G_{d} \times{ }_{d^{*}} Z_{0} \xrightarrow{\sim} \mathcal{R}_{d^{*}}^{H N} .
$$

Since G_{d} and Z_{0} are both irreducible, so is $\mathcal{R}_{d^{*}}^{H N}$. Since m is both open and closed, and since $G_{d} \times Z_{0}$ is open in $G_{d} \times Z, \mathcal{R}_{d^{*}}^{H N}$ is open in $\mathcal{R}_{d^{*}}$, and so $\mathcal{R}_{d^{*}}^{H N}$ is locally closed in \mathcal{R}_{d}.

We have stratified \mathcal{R}_{d} into irreducible, locally closed strata, and we have seen that the closure of the HN -stratum $\mathcal{R}_{d^{*}}^{H N}$ is precisely $\mathcal{R}_{d^{*}}$. We will see that $\mathcal{R}_{d^{*}}$ is not always a union of HN -strata, but it is contained in a more or less restricted collection of HN-strata nonetheless. We give a partial ordering on the set of HN-types that will allow us to make this statement more precise.

Definition. For an HN-type $d^{*}=\left(d^{1}, \ldots, d^{s}\right)$, define $P\left(d^{*}\right)$ to be the polygon in \mathbb{N}^{2} with vertices $v_{0}=(0,0), v_{k}=\left(\sum_{i=1}^{k} \operatorname{dim}\left(d^{i}\right), \sum_{i=1}^{k} \theta\left(d^{i}\right)\right)$. Note that the slope of the edge from v_{k-1} to v_{k} is

$$
\frac{\theta\left(d^{k}\right)}{\operatorname{dim}\left(d^{k}\right)}=\mu\left(d^{k}\right)
$$

so the fact that d^{*} is an HN-type - and in particular that the slopes of the d^{k} 's are decreasing-tells us that $P\left(d^{*}\right)$ is a convex polygon. Now define a partial order $d^{*} \leq e^{*}$ if and only if $P\left(d^{*}\right)$ lies on or below $P\left(e^{*}\right)$ in \mathbb{N}^{2}.

Theorem 3.2.

$$
\mathcal{R}_{d^{*}} \subseteq \bigcup_{e^{*} \geq d^{*}} \mathcal{R}_{e^{*}}^{H N}
$$

Proof. Let $X \in \mathcal{R}_{d^{*}}$. We will show that the HN type e^{*} of X is greater than or equal to d^{*}. Since X has a filtration of type d^{*}, it suffices to show that for an arbitrary subrepresentation $U \subset X$, the point $(\operatorname{dim}(U), \theta(U))$ is on or below $P\left(e^{*}\right)$. We will induct on the length of the tuple e^{*}. If the length is $1, X$ is semistable and there is nothing to prove.

Let

$$
0 \subset X_{1} \subset X_{2} \subset \ldots \subset X_{s}=X
$$

be the HN-filtration on X, so that

$$
0 \subset X_{2} / X_{1} \subset \ldots \subset X_{s} / X_{1}=X / X_{1}
$$

is the HN-filtration on X / X_{1}, which has length $s-1$. Denote its dimension type f^{*}. By the induction hypothesis, the point $\left(\operatorname{dim}\left(\left(U+X_{1}\right) / X_{1}\right), \theta\left(\left(U+X_{1}\right) / X_{1}\right)\right)$ lies on or below $P\left(f^{*}\right)$, so the point $\left(\operatorname{dim}\left(U+X_{1}\right), \theta\left(U+X_{1}\right)\right)$ lies on or below $P\left(e^{*}\right)$, since quotienting by X_{1} is the same as translating, in the \mathbb{N}^{2}-plane, by $\left(-\operatorname{dim}\left(X_{1}\right),-\theta\left(X_{1}\right)\right)$.

Now we have the short exact sequences

$$
\begin{gathered}
0 \longrightarrow U \longrightarrow U+X_{1} \longrightarrow X_{1} /\left(U \cap X_{1}\right) \longrightarrow 0 \\
0 \longrightarrow U \cap X_{1} \longrightarrow X_{1} \longrightarrow X_{1} /\left(U \cap X_{1}\right) \longrightarrow 0
\end{gathered}
$$

Since X_{1} has maximal slope among the submodules of X, the slopes in the second sequence are increasing and

$$
\mu\left(U+X_{1}\right) \leq \mu\left(X_{1}\right) \leq \mu\left(X_{1} /\left(U \cap X_{1}\right)\right)
$$

So the slopes in the first sequence are also increasing, so

$$
\mu(U) \leq \mu\left(U+X_{1}\right)
$$

and since $U+X_{1}$ is on or below $P\left(e^{*}\right)$ and has a greater x-coordinate than U, U is also on or below $P\left(e^{*}\right)$.

The inclusion in Theorem 3.2 may be proper. The following example will illustrate this.

Example. Consider the quiver

$$
i \longrightarrow j \longrightarrow k
$$

and its representations of dimension type $d=i+j+k$ over \mathbb{C}. Then a representation will look like

$$
\mathbb{C} \xrightarrow{x} \mathbb{C} \xrightarrow{y} \mathbb{C}
$$

and

$$
\mathcal{R}_{d}=\operatorname{Hom}_{\mathbb{C}}(\mathbb{C}, \mathbb{C}) \times \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}, \mathbb{C})=\mathbb{C} \times \mathbb{C}
$$

Let $\theta=2 i^{*}+3 j^{*}$ and take the tuple $d^{*}=(i, j+k)$. We want to see when X has an HN-filtration of type d^{*}. Such a filtration will look like

$$
0 \subset \mathbb{C} \xrightarrow{x} 0 \xrightarrow{y} 0 \subset \mathbb{C} \xrightarrow{x} \mathbb{C} \xrightarrow{y} \mathbb{C},
$$

and the first subspace will be a subrepresentation if and only if $x=0$. Moreover, the quotient

$$
0 \xrightarrow{0} \mathbb{C} \xrightarrow{y} \mathbb{C}
$$

gives the subrepresentation slopes

$$
\begin{aligned}
& \mu(0 \xrightarrow{0} \mathbb{C} \xrightarrow{y} \mathbb{C})=3 / 2 \\
& \mu(0 \xrightarrow{0} 0 \xrightarrow{y} \mathbb{C})=0
\end{aligned}
$$

$$
\text { and if } y=0
$$

$$
\mu(0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0)=3 .
$$

The last equation makes $0 \xrightarrow{0} \mathbb{C} \xrightarrow{y} \mathbb{C}$ unstable, so we require $y \neq 0$, making our HN-stratum $\mathcal{R}_{d^{*}}^{H N}=\{0\} \times \mathbb{C}^{*}$.

Now consider the tuple $e^{*}=(j, i, k)$, which gives a filtration

$$
0 \subset 0 \xrightarrow{x} \mathbb{C} \xrightarrow{y} 0 \subset \mathbb{C} \xrightarrow{x} \mathbb{C} \xrightarrow{y} 0 \subset \mathbb{C} \xrightarrow{x} \mathbb{C} \xrightarrow{y} \mathbb{C} .
$$

For the first subspace to be a subrepresentation we need $y=0$. But in fact that condition is the only one, since the quotients, being one-dimensional, are always semistable. This gives us the stratum $\mathcal{R}_{e^{*}}^{H N}=\mathbb{C} \times\{0\}$.

Then the closure of $\mathcal{R}_{d^{*}}^{H N}$ is $\{0\} \times \mathbb{C}$, which is properly contained in the union $\mathcal{R}_{d^{*}}^{H N} \cup \mathcal{R}_{e^{*}}^{H N}=\{0\} \times \mathbb{C}^{*} \cup \mathbb{C} \times\{0\}=\mathbb{C} \times \mathbb{C}$, but is not itself a union of strata.

4 Kempf-Ness and Quivers

From now on we work over \mathbb{C}. We recall briefly the theory of Kempf-Ness and its generalization to Mumford's GIT. For this we follow [3], where the proofs of the following statements may also be found.

Let R be a vector space on which a reductive algebraic group G acts, and fix a character χ of G. Let $K \leq G$ be a maximal compact subgroup, \mathfrak{k} its Lie algebra, and recall that $\mathfrak{g}=\mathfrak{k} \oplus i \mathfrak{k}$. Let (\cdot, \cdot) be a K-invariant hermitian form on R, and $\eta: R \longrightarrow(i \mathfrak{k})^{*}$ the moment map, given by

$$
\eta_{x}(A)=(A \cdot x, x)
$$

for every $x \in R$ and $A \in i k$.
Let $d \chi$ denote the restriction of the derivative of χ to $i \mathfrak{k}$, so that $d \chi \in(i \mathfrak{k})^{*}$. Then we have the following generalization of Kempf-Ness:

Theorem. The preimage $\eta^{-1}(d \chi)$ meets each G-orbit in R that is closed in $R_{\chi}^{s s}$ in exactly one K-orbit, and meets no other G-orbits.

Corollary.

$$
\eta^{-1}(d \chi) / K \longleftrightarrow R_{\chi}^{s s} / /(G, \chi)
$$

Now, returning to the context of quivers, we have

$$
\begin{aligned}
& R=\mathcal{R}_{d} \\
& G=G_{d} \\
& \chi=\chi_{0}
\end{aligned}
$$

and if we fix a Hermitian inner product on each X_{i}, invariant under the action of the unitary subgroup $U\left(d_{i}\right) \leq G L\left(X_{i}\right)$, we have the maximal compact subgroup

$$
U_{d}=\prod_{i \in I} U\left(d_{i}\right) \leq G_{d}
$$

Its lie algebra is $\mathfrak{k}=\bigoplus_{i \in I} \operatorname{Herm}_{\mathbb{C}}\left(X_{i}\right)$, the sum of the spaces of Hermitian endomorphisms on each X_{i}.

Our Hermitian inner product induces an inner product on each $\operatorname{Hom}_{\mathbb{C}}\left(X_{i}, X_{j}\right)$ given by

$$
(\varphi, \psi)=\operatorname{Tr}\left(\varphi \cdot \psi^{*}\right)
$$

so the corresponding inner product on \mathcal{R}_{d} is

$$
\left(\left(\varphi_{\alpha}\right),\left(\psi_{\alpha}\right)\right)=\sum_{\alpha} \operatorname{Tr}\left(\varphi_{\alpha} \cdot \psi_{\alpha}^{*}\right)
$$

We will compute the moment map with respect to this inner product. Recall that G acts on \mathcal{R}_{d} by

$$
\left(g_{i}\right)_{i \in I} \cdot\left(\varphi_{\alpha}\right)_{\alpha: i \rightarrow j}=\left(g_{j} \varphi_{\alpha} g_{i}^{-1}\right)_{\alpha: i \rightarrow j},
$$

so \mathfrak{g} acts on \mathcal{R}_{d} by

$$
\left(A_{i}\right)_{i \in I} \cdot\left(\varphi_{\alpha}\right)_{\alpha: i \rightarrow j}=\left(A_{j} \varphi_{\alpha}-\varphi_{\alpha} A_{i}\right)_{\alpha: i \rightarrow j}
$$

Then the moment map $\eta_{\left(\varphi_{\alpha}\right)}\left(A_{i}\right)$ is

$$
\begin{aligned}
\left(\left(A_{i}\right) \cdot\left(\varphi_{\alpha}\right),\left(\varphi_{\alpha}\right)\right) & =\left(\left(A_{j} \varphi_{\alpha}-\varphi_{\alpha} A_{i}\right),\left(\varphi_{\alpha}\right)\right) \\
& =\sum_{\alpha: i \rightarrow j} \operatorname{Tr}\left(A_{j} \varphi_{\alpha} \varphi_{\alpha}^{*}-\varphi_{\alpha} A_{i} \varphi_{\alpha}^{*}\right) \\
& =\sum_{i \in I} A_{i}\left(\sum_{\alpha: \square \rightarrow j} \operatorname{Tr}\left(\varphi_{\alpha} \varphi_{\alpha}^{*}\right)-\sum_{\alpha: i \rightarrow \square} \operatorname{Tr}\left(\varphi_{\alpha}^{*} \varphi_{\alpha}\right)\right)
\end{aligned}
$$

where the last equality follows from the fact that $\operatorname{Tr}\left(\varphi_{\alpha} A_{i} \varphi_{\alpha}^{*}\right)=\operatorname{Tr}\left(A_{i} \varphi_{\alpha}^{*} \varphi_{\alpha}\right)$.

References

[1] M. Reineke, The Harder-Narasimhan System in Quatum Groups and Cohomology of Quiver Moduli. Inventiones Mathematicae 152 (2003), 349-368.
[2] A. Rudakov, Stability for an Abelian Category. Journal of Algebra 197 (1997), 231-245.
[3] A. D. King, Moduli of Representations of Finite Dimensional Algebras. Quarterly Journal of Mathematics - Oxford Journal 45 (1994), 515-530.

